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Transport on an annealed disordered lattice

Radim Vočka*
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~Received 28 January 1999!

We study the diffusion on an annealed disordered lattice with a local dynamical reorganization of bonds. We
show that the typical rearrangement time depends on the renewal rate liket r;ta with aÞ1. This implies that
the crossover time to normal diffusion in a slow rearrangement regime shows a critical behavior at the
percolation threshold. Additional scaling relations for the dependence of the diffusion coefficient on the
renewal rate are obtained. The derivation of scaling exponents confirms the crucial role of singly connected
bonds in transport properties. These results are checked by numerical simulations in two and three dimensions.
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‘‘Dynamic percolation’’ ~‘‘stirred percolation’’! @1,2# was
introduced as a model of transport in environments t
evolve in time, e.g., microemulsions or polymers~for further
applications, see@3#!. The simplest version of the model
defined on ad-dimensional regular lattice. Each pair of nea
est neighbor sites is connected by a bond, which can
either conducting or insulating. We notep the proportion of
conducting bonds. Time evolution of the environment
achieved by a reorganization of bonds, defined below. D
fusion of a tracer particle in such a network is convenien
described by the ant-in-the-labyrinth paradigm@4#. Two ba-
sic algorithms are available. The ‘‘blind’’ ant chooses
direction randomly at each time step and moves only if
corresponding bond is conducting. The ‘‘Myopic’’ an
chooses among the conducting bonds. Both algorithms
to the same scaling behavior of the diffusion coefficie
Two qualitatively different dynamic percolation models a
peared in the literature. The global reorganization mode
the simplest. After some renewal timeTr , the assignment o
conducting bonds is updated throughout the lattice. The
havior of this model is well understood@3#, as it is closely
related to the ordinary percolation. If^r 2&Tr

is the mean
square distance traveled on the quenched lattice during
time Tr , the diffusion coefficient on the stirred lattice will b
D5^r 2&Tr

/2dTr . The case of local reorganization, which
studied in this article, is more realistic, because the evolu
of the network is continuous. The state of a bond evol
through a Poissonian process with a characteristic timet. At
each iteration a conducting bond is cut with a probabi
1/(pt), and a randomly chosen nonconducting bond
comes conducting, to insure that the proportionp of conduct-
ing bonds is conserved. No exact result is available for
dependence of the diffusion coefficientD on p andt, except
in some particular one-dimensional situations@5#. Approxi-
mative solutions of the problem in any dimension can
obtained by means of a time-dependent version of
effective-medium approximation developed in@2#.

Here, we study the scaling of the diffusion coefficientD
in the vicinity of the percolation thresholdpc of the
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quenched network. Several different scaling formulas
D(p2pc ,t) were proposed in the literature. They were d
rived for models with slightly different local evolution rules
but the details in the local rules are not relevant for the cr
cal behavior aroundpc @6#. As discussed below, our simula
tion results donot support current predictions. We derive
scaling formula for the diffusion coefficient, which we con
firm by extensive numerical simulations. The behavior at
percolation threshold is studied first, before we treat the g
eral case of the behavior aroundpc .

The mean square displacement in the vicinity ofpc on a
quenched percolation network is given by@7#

^R2&5t2/dw8 f @~p2pc!t
1/(2n1m2b)#, ~1!

where dw8 is the anomalous-diffusion exponent,dw8 5(2n
1m2b)/(n2b/2), and

f ~x!;H xm as x→`

~2x!22n1b as x→2`

const asx→0.

At early times, anomalous diffusion is observed. The cro
over to a normal diffusion~if p.pc) or to a localization
regime ~if p,pc) appears at a time of the order oftc;up
2pcub22n2m, which is the only relevant time scale of th
problem. In the case of dynamically disordered lattices,
other time scale, related to the cluster rearrangement proc
has to be taken into account. We define this typical ‘‘re
rangement’’ timet r as crossover time from anomalous
normal diffusion at the percolation threshold. It is only
function of the evolution ratet, and we assume a depen
dence in the formt r;ta. The mean square displacement
the presence of dynamical disorder is thus described b
scaling formula depending on two parameters,t/tc and t/t r
@1#:

^R2&5t2/dw8 g@~p2pc!t
1/(2n1m2b);t/ta#. ~2!

At the percolation threshold,tc diverges, and the precedin
expression reads

^R2&5t2/dw8 x~ t/ta!, ~3!
3516 © 1999 The American Physical Society
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PRE 60 3517TRANSPORT ON AN ANNEALED DISORDERED LATTICE
where x(y); const asy→0 and x(y)5Dy122/dw8 as y
→`. The diffusion coefficientD is obtained in the limitt
→` by

D;t2am/(2n1m2b). ~4!

Equation~4! contains an unknown parametera. Several val-
ues ofa were proposed in the literature. In@6#, the problem
was mapped on the continuous random walk, and the lo
and upper bounds fora were predicted. In@1# a51 is con-
sidered. The only justification for this value is the assum
tion that the global and local rearrangement models have
same behavior. We have performed Monte Carlo simulati
to evaluatea numerically. The diffusion coefficient can onl
be measured for small values oft, where the crossover tim
t r is small. In order to explore a broader range of values,
have determineda from the finite size scaling relation~3!.
We measured̂R2& for t between 53103 and 1.623106 in
two dimensions, and between 7.83103 and 5.123105 in
three dimensions. In two dimensions the best data colla
with parametera is obtained fora50.8060.02~Fig. 1!, and
in three dimensions fora50.7960.03 ~Fig. 2!. Identical re-
sults were obtained with both the myopic and the blind
algorithms.

As a matter of fact, the value ofa can be evaluated as
function of known critical exponents using simple assum
tions about the geometry of clusters. Clusters are compo
of well connected blobs, interconnected by singly connec
bonds~‘‘red bonds’’! @8#. If a red bond is cut, the cluste
breaks into two parts. We argue that the crossover time
responds to a removal~or addition! of a red bond in the
region visited by the tracer particle. The red bonds are
only possible paths where a particle can escape from a b
hence, they control the diffusion. Fort,t r a particle visits

on average a hypersphere of a diameterR;t1/dw8 . The ‘‘net-
work’’ of red bonds is fractal, and their number inside t
hypersphere grows asNrb;R1/n @9#. The crossover corre

FIG. 1. Scaling functionx @Eq. ~3!# in two dimensions. Results
obtained fort51.623106 ~solid line!, t54.053105 ~dotted line!,
t51.83105 ~dashed line!, t54.53104 ~long dashed line!, t5
5.03103 ~dotted dashed line! with the blind ant algorithm.

Asymptotic behaviory;x122/dw8 ~bold long dashed line!.
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sponds to the average time for the first ofNrb red bonds to be

cut. Hence,t r;t/Nrb;tdw8 /(dw8 11/n), giving

a5
dw8

dw8 11/n
. ~5!

In two dimensions, wheren54/3, b55/36 @10#, and m
51.303 @11# we obtain a50.802. In three dimensionsa
50.8160.06 is obtained, usingn50.8860.02, m52.003
60.047@12#, andb50.40560.025@13#. These values ofa
are in excellent agreement with numerical results. Relat
~5! predicts thata51 for d>6, so in this limit the local and
the global reorganization rules lead to the same scaling.

Knowing the value ofa, the complete scaling law forD
in the vicinity of the percolation threshold can be deduc
from Eq.~2!. The ratiotc /t r separates two different regime
In the fast rearrangement regime (tc /t r@1) a tracer particle
does not see the finiteness of cluster sizes, hence the sc
of D is given by Eq.~4!. In the slow rearrangement regim
(tc /t r!1) two cases have to be considered. Forp.pc and
t→`, known results for the diffusion on the quenched n
work @7# should be recovered; hence,

D;up2pcum. ~6!

For p,pc the situation is more complicated. Att'tc!t r ,
the network is not yet reorganized and anomalous diffus
crossovers to a localization regime on a finite cluster exa
in the same way as for the quenched network. The m
square displacement is thus^R2&;up2pcub22n. For t.tc it
grows as

^R2&;up2pcub22ng8@ up2pcut1/(2n1m2b);t/ta#.

For t→` a diffusive regime is reached, and it is evident th
D;1/t in this case. Thus the scaling functiong8 behaves as
g8@x,y#;x2ay1/a for x,y→`, where the coefficienta reads

FIG. 2. Scaling functionx @Eq. ~3!# in three dimensions. Result
obtained fort55.123105 ~solid line!, t51.283105 ~dotted line!,
t53.123104 ~dashed line!, t57.83103 ~long dashed line! with

the myopic ant algorithm. Asymptotic behaviory;x122/dw8 ~bold
long dashed line!.
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3518 PRE 60RADIM VOČKA
a5~1/a21!~2n1m2b!512
b

2n
. ~7!

The final expression was obtained replacinga by Eq. ~5!.
Then a50.948 in two dimensions anda50.7760.017 in
three dimensions. The scaling relation fort.tc can thus be
written as a function of a unique parameter

^R2&;up2pcub22ng9F t

up2pcuat
G , ~8!

with f (y);const fory→0, f (y);y for y→`. It is readily
seen that the crossover timetc8[up2pcuat has itself a criti-
cal behavior nearpc with an exponenta. This fact has been
already predicted in@14# but a different exponenta51 was
proposed. The scaling ofD in the slow rearrangement regim
is simply deduced from Eq.~8!,

D;
up2pcub22n2a

t
. ~9!

The complete scaling law forD consistent with Eqs.~4!, ~6!,
and ~9! reads

D5
up2pcub22n2a

t
f@~p2pc!t

1/(2n1m1a2b)#, ~10!

with

f~z!;H const asz→2`

uzu2n1a2b as z→0

z2n1m1a2b as z→`.

To verify this relation, we have calculated the diffusio
coefficient in two dimensions for different values oft and
for p in the range@0.4;0.47# and@0.53;0.7#, using the algo-
rithm of the myopic ant. Results are presented in Fig.
They are well rescaled by the relation~10! ~Fig. 4!. The best

FIG. 3. Calculation ofD for different values ofup2pcu andt.
Results for p50.47 (s), p50.43 (h), p50.42 (L), p
50.41 (n), p50.40 (,), p50.53 (1), p50.56 (3), p
50.60 (*), and p50.70 (x). Function~4! ~solid line!.
.

collapse seems to be reached for a slightly smaller valu
a (a50.9) than predicted by Eq.~7! (a50.948). However,
the collapse is not very sensitive on the precise value oa,
because the slow rearrangement regime is not explore
our range of (t,p). It is difficult to attain this regime using a
simple random walk, since the crossover time to the dif
sive behavior becomes too important for large values ot.
This is the reason why we used the following algorithm
verify Eq. ~9!.

We start from a given site belonging to a cluster ofs sites.
We suppose that the evolution of the network is quasista
before the network is rearranged, the particle is thermaliz
so that the probability to find it on a given cluster site equ
1/s. Thus we assign at first the probability 1/s to each cluster
site. We then exchange one conducting bond with an in
lating bond, find a new cluster distribution, and thermal

FIG. 5. Scaling functiong9 ~8! in two dimensions. The data fo
p50.4 ~solid line!, p50.41 ~dotted line!, p50.42 ~dashed line!,
p50.43 ~long dashed line!, p50.44 ~dotted-dashed line! and p
50.46 ~solid line!. Asymptotic behaviory;x ~bold long dashed
line!.

FIG. 4. Results of calculation ofD for different values ofup
2pcu and t rescaled by Eq.~10!. Results forp50.47 (s), p
50.43 (h), p50.42 (L), p50.41 (n), p50.40 (,), p
50.53 (1), p50.56(3), p50.60 (*), p50.70 (x). Function
f (z);z2n1a2b ~dashed line!.
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PRE 60 3519TRANSPORT ON AN ANNEALED DISORDERED LATTICE
the probability distribution on each cluster. We iterate t
procedure and measure the mean square displacement
Hoshen-Kopelman algorithm@15# was used to obtain the dis
tribution of clusters. To get good statistics, an average o
more than 2000 realizations was performed, so we were
ited to networks of relatively small size~up to 4003400
sites!. Since the diffusive regime is not attained on such
small network, we used the finite size scaling formula~8!.
We measured̂R2& for p ranging from 0.4 to 0.46. For highe
values ofp, clusters are too large, and much bigger netwo
have to be used. The data collapse is obtained fora50.87
60.05 ~Fig. 5!; that is, for a value slightly smaller than pre
dicted by Eq.~7!. The same effect as in the case of the d
collapse ofD(p2pc ,t) is thus encountered. The discre
ancy is due to fact that we are already out of the criti
region, so corrections to the exponentsa anddw should be
taken into account. For values ofp far from pc , the prob-
ability of having a large cluster, corresponding to a lo
jump, grows more slowly than nearpc , and the growth of
the diffusion coefficient withp is thus also slower.
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In conclusion, we have derived a scaling law for the d
fusion coefficient in the case of a simple model of stirr
percolation. The dependence of the scaling exponents on
basic exponents of the percolation theory was found.
showed that the distribution of red bonds controls the tra
port in the network. Results are supported by extensive
merical simulations. In the slow rearrangement regime
p,pc the diffusion coefficient scales asD;up2pcus8,
wheres8822.1 in three dimensions. The value of the sc
ing exponent in microemulsions (s881.2) @17–19# thus can-
not be explained by this simple model, as suggested ea
@16#. It is plausible that the difference is due to interpartic
interactions that are present in microemulsions. They play
important role in the formation of clusters@20# and they
might also influence the dynamics of the reorganization
the environment.
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